# 0CTF – RSA? writeup

In this challenge, we are given a public key with public exponent $e = 3$ and public modulus $N = 23292710978670380403641273270002884747060006568046290011918413375473934024039715180540887338067.$ The ciphertext that we are supposed to decrypt is $c = 2485360255306619684345131431867350432205477625621366642887752720125176463993839766742234027524.$

Using e.g. msieve, this can be factored into three distinct prime factors:
$p_1 = 26440615366395242196516853423447$, $p_2 = 27038194053540661979045656526063$ and $p_3 = 32581479300404876772405716877547$.

First, we compute $c_i = c \bmod p_i$ for all $i = 1,2,3$. Then, using PARI/GP, we execute the following operation `factor(x^3 - Mod(c_i, p_i))` for each $i$.

For each such operation, we obtain a few roots:

```L1 = [13065746773528615679127725156712, 19061253618972528384862766945681, 20754230340289340329043214744501]
L2 = [7421220485922146514530548901251]
L3 = [19177276190995540727122167162170, 19553467714697919836353088849918, 26432214695116292981336177743006]
```

Running a CRT for all possible combinations in `[a,b,c]` $\leftarrow$ `L1 x L2 x L3`.

```m = chinese_remainder(n, [-a,-b,-c])
```

we find the flag `0ctf{HahA!Thi5_1s_n0T_rSa~}`.